TRACES 2008

Research Status and Priorities Coral biology and Reproduction

Sandra Brooke

Status of deepwater coral biology research

Reproduction: Stony corals

Reproductive strategy and gametogenic cycles known for some species, including Lophelia pertusa

Structure forming species are gonochoristic broadcast spawners Fecundity estimated for O. varicosa and L. pertusa

Female with mature eggs

Male with ___ mature sperm

Embryogenesis and larval biology known only for *Oculina varicosa*Larval settlement cues and recruitment rates unknown

Age at reproductive maturity unknown

Comparison of the gametogenic cycles of *L. pertusa* from Norwegian Fjords and northern Gulf of Mexico

Octocorals

Reproductive strategy known for some species: Broadcast spawning vs brooding is taxon specific

Oocytes in gorgonian polyp

Deep sea Isidid with oocytes visible along axis

Embryogenesis and larval biology not known for most deepwater octocorals
Larval settlement cues and recruitment rates unknown
Age at reproductive maturity unknown

http://server.dmc.maine.edu/watlingsite/PAGES/repro.html

Hydrocorals

All species studied are gonochoristic brooders with most gonophores containing mature embryos or planulae.

Gametes within a single specimen were not highly synchronized Females contained eggs as well as planulae, and males exhibited a range of gamete development.

Larvae have short planktonic stage Recruitment rates unknown

Growth of Lophelia transplants and in situ stained colonies

3 cm 3 cm

Lengthwise and transverse sections of stained transplant fragments showing two growth centers (stain bands) for each section

Examples of recovered fragments showing new polyps and growth lines

Lophelia transplants growth and number of new polyps

Documented deepwater coral growth rates

Lophelia pertusa

5-34mm yr-1 linear

Enallopsammia rostrata

5 mm yr-1 linear

Primnoa resedaeformis

1.5-17 mm yr-1 linear 0.04-0.18 m yr-1 radial

Corallium secundum

9.0 mm yr-1 linear

0.17 mmyr-1 radial

Antipathes sp

61.2-64.2 mm yr-1 linear

< 0.13 mmy yr-1 radial

Gerardia sp

66.0 mm yr-1 linear

0.05 mm yr-1 radial

Skeletal density of *L. pertusa* morphotypes

Resin-embedded sections (2mm thick) of

A) brachycephala and B) gracilis morphotypes showing the higher number and more closely spaced bands in the heavier morphotype

Skeletal density characteristics of different morphotypes of *L. pertusa*.

Micro-density represents the aragonite skeleton Bulk density is total density, including pore spaces. Porosity represents air spaces in the skeleton

Environmental tolerances: Controlling factors in *Lophelia* distribution

Percent survival of *L. pertusa* exposed to different experimental temperatures for 24 hours and 7 days

Sediment tolerance

Mean % survival of two morphotypes of *L. pertusa* after exposure to a range of sediment suspensions for 14 days Error bars: SE of n=3 trials.

Respiration

L. pertusa can regulate respiration under moderate hypoxia Lower limit for compensation is ~ 3.25 ml l-1 O_2 L. pertusa can regulate over wide range of $[O_2]$ Respiration is sensitive to small changes in temperature.

Combination of O_2 and temperature may determine distribution of L. pertusa

Research priorities

Reproductive ecology of the structure-forming corals and recovery potential of damaged areas.

Energetics of structure-forming corals and effects of changing environmental conditions

Rate of skeletal growth, mound growth and causes of large scale mortality of structure-forming scleractinians

Reproductive ecology of the structure-forming corals and recovery potential of damaged areas.

Approach

Use a combination of histological techniques, genetics, live culture and hydrography, to identify dispersal patterns, recruitment potential and population structure

Scientific merit: High

Increase understanding of connectivity between different areas help identify sources and sinks of genetic recruits, establish vulnerability of the system to perturbation and probability of recovery from damage

Policy relevance: High Knowledge of importance and/or vulnerability of different areas will help guide policy.

Feasibility: High

Much of this work is underway. Samples can be collected opportunistically. Corals can be maintained easily and current meters can be deployed for hydrographic data

Energetics of structure-forming corals and effects of changing environmental conditions

Approach

Includes effect of environmental parameters on survival, respiration, tissue lipid content, calcification etc using ex situ manipulative experiments and in situ sampling/observations

Scientific merit: High

We currently have very little idea how natural or anthropogenically induced changes affect the survival and health of deepwater corals

Policy relevance: High

Understanding of the effects of change could guide policy decisions

Feasibility: Medium-high

Lophelia has been maintained in aquaria successfully for manipulative experiments and in situ observatories have been used in some locations.

Some species may not do well in aquaria

Rate of skeletal growth, mound growth and causes of large scale mortality of structure-forming scleractinians

Approach

Isotopic dating techniques and in situ observation of growth rates (incl. artificial structures), Coring and dating of Lophelia mounds, investigate biological and physical interactions on sedimentation of dead skeleton.

Use 'high resolution' isotopes to determine age of coral on dead mounds. Use paleo proxys in antipatharians and gorgonians to identify potential climate features that may have caused scleractinian mortality.

Scientific merit: High

It is important to know time scales of coral structure formation and causes of mass stony coral mortality observed in many locations

Policy relevance: Medium

Policy cannot influence processes if driving forces are natural

Feasibility: High

Would require some expensive coring and pioneering isotopic techniques, but with careful design and adequate samples it can be done